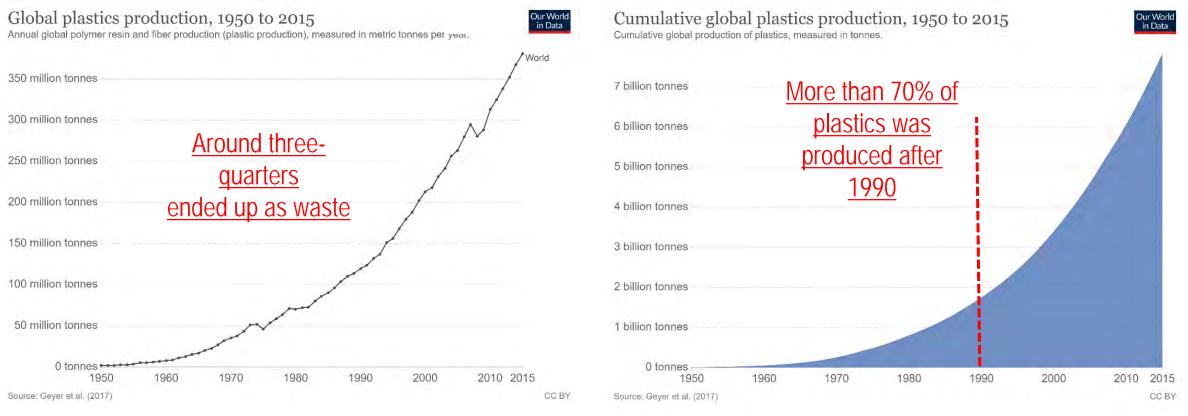


RIVERINE MICROPLASTICS POLLUTION IN ASEAN COUNTRIES - FROM SOURCES TO RIVERS -

Dr. Pham Ngoc Bao Deputy Director Adaptation and Water Institute for Global Environmental Strategies (IGES) Email: ngoc-bao@iges.or.jp

OUTLINE OF THE PRESENTATION

- 1. Background on plastic invention and plastics development in Asia & ASEAN region
- 2. Plastic production and its leakage to the environment
- Microplastic occurrences, ingestion and its impacts on aquatic environments in ASEAN countries
- 4. Potential impacts of microplastics pollution on food chain and human health
- 5. Removal of microplastics from water/wastewater treatment plants
- 6. Circular plastic economy approach for closing the loop
- 7. Key recommendations for addressing riverine microplastics pollution

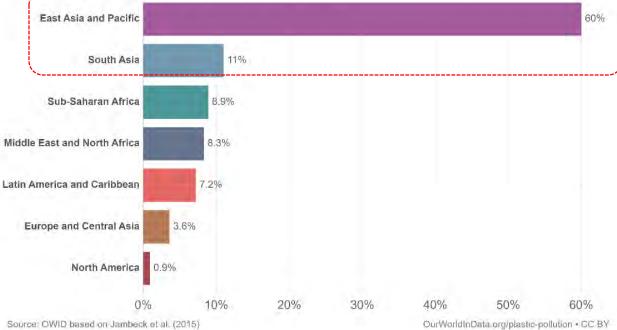

1. BACKGROUND ON PLASTIC INVENTION AND

PLASTICS DEVELOPMENT IN ASIA

- In 1907, Leo Baekeland invented Bakelite, the first fully <u>synthetic plastic</u>, marking the beginning of the global plastics industry. However, rapid growth in global plastic production was not realized until the 1950s.
- During 1950-2000, annual production of plastics increased to about 200 million tonnes per year in 2000. The plastic production rate even increased more rapidly after 2000. More than 70% of plastics was produced after 1990.
- Plastic is a unique material which brings many benefits and convenience to our modern society nowadays. No one can deny.
- Use to mismanagement, we are "turning" plastics into "an emerging challenge/pollutant" to our environment and our world. Plastic pollution is having a negative impact on our ecosystem and human health
- ✓ In general, developed countries are generating more plastic waste per capita; but mismanaged plastic ratio discharged into the environment and finally end-up in the seas is much higher in developing countries, especially in Asia region.

2. PLASTIC PRODUCTION AND ITS LEAKAGES TO THE ENVIRONMENT

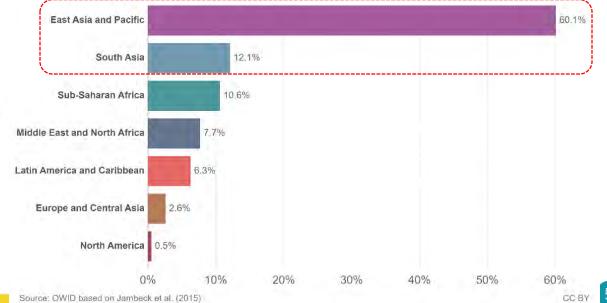
IN ASEAN COUNTRIES



<u>ASEAN Countries accounts for about 20%</u> of global plastic production

(Indonesia, Malaysia, the Philippines, Singapore, Thailand and Viet Nam have the largest growth in plastic production and consumption)

Global mismanaged plastic by region, 2010

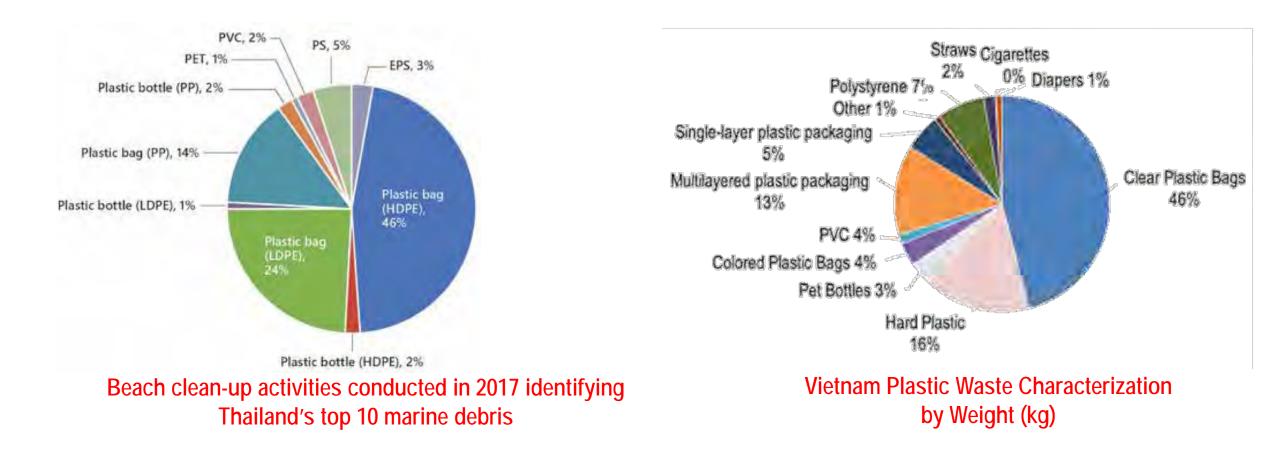

This is measured as the total mismanaged waste by populations within 50km of the coastline, and therefore defined as high risk of entering the oceans. Mismanaged plastic waste is defined as "plastic that is either littered or inadequately disposed. Inadequately disposed waste is not formally managed and includes disposal in dumps or open, uncontrolled landfills, where it is not fully contained. Mismanaged waste could eventually enter the ocean via inland waterways, wastewater outflows, and transport by wind or tides."



- 'Takeaway food culture', 'e-commerce activities' and 'sachet economy' are growing in the Southeast Asia region, leading to an increased use of plastics.
- □ Consumer preferences are also shifting from traditional fresh foods to packaged foods, while at the same time, shopping on digital platforms is on the rise
- Consequently, this convenience and versatility has resulted in an increase in plastic waste, with mismanaged plastic waste emerging as an environmental problem

Global mismanaged plastic waste by region, 2025

Projected mismanaged plastic waste by region in 2025, given as a share of the global total. This is measured as the total mismanaged waste by populations within 50km of the coastline, and therefore defined as high risk of entering the oceans. Mismanaged plastic waste is defined as "plastic that is either littered or inadequately disposed. Inadequately disposed waste is not formally managed and includes disposal in dumps or open, uncontrolled landfills, where it is not fully contained. Mismanaged waste could eventually enter the ocean via inland waterways, wastewater outflows, and transport by wind or tides."

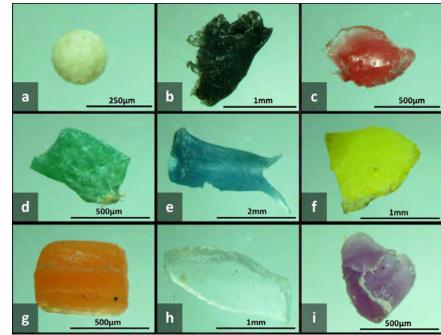


- ✓ The Philippines has been identified as the seventh largest contributor of mismanaged plastic wastes to the coastal environment globally.
- ✓ About 1.01 million tonnes of plastic wastes were calculated as mismanaged by the country in 2016.

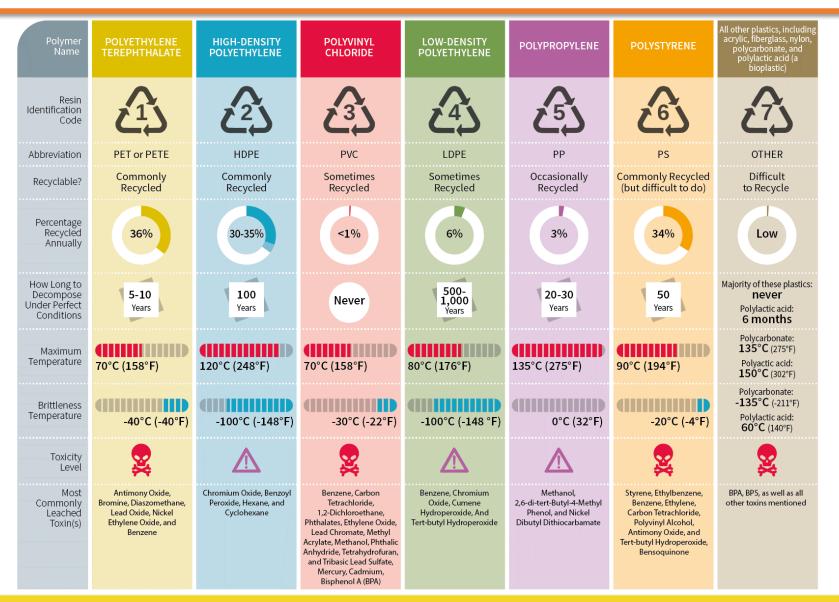
- More than 163 million plastic sachet packets, 48 million shopping bags (or roughly 17.5 billion pieces a year) and 45 million thin film bags daily.
- Out of the 2.1 million tonnes of plastics that are available for local consumption in 2019, about 7.1 hundred thousand tonnes or 33% are disposed to landfills and dumpsites, 3.5 hundred thousand tonnes or 16% are stored and in-use, and 1.9 hundred thousand tonnes or 9% are being recycled.
- Around 7.61 hundred thousand tonnes or 35% are leaked to the open environment as plastic wastes wherein majority of these are bottles, containers, and single-use plastics (SUPs) such as bags and sachets recycled.
- □ These plastic wastes may retain in land and storm drains, enter the waterbodies, and be burnt.

EXAMPLE OF PLASTIC COMPOSITION IN MUNICIPAL SOLID WASTES IN ASEAN COUNTRIES

HOW LONG DOES IT TAKE TO DECOMPOSE DIFFERENT SHORT-LIVED PLASTIC ITEMS?


Monofilament fishing line/net (PA) 600 years

Nylon fabric (Polyamide fabric) 30-40 years Polyester cloths 20-200 years


CHARACTERISTICS FOR CATEGORISING PLASTIC DEBRIS Size, Shape & Color

a. Size-based clas	sification			
< 1µm	$1\mu m - 5 mm$	5 mm – 2.5 cm	2.5 cm -1 m	>1 m
Nano	Micro	Meso	Macro	Mega
<u>1μm</u>	1 mm			
b. Morphology-ba				
Fragments Irregular particles, Crystals, Fluff, Powder, Granules, Shavings	Fibers Filaments, Microfibers, Strands, Threads	Beads/ Spheres Grains, Spherical microbeads, Microspheres	Films/ Sheets Grains, Spherical microbeads, Microspheres	Pellets Resin pellets, Nurdles, Pre-production pellets, Nibs

c. Color classification: (a) White, (b) Black, (c) Red, (d) Green, (e) Blue, (f) Yellow, (g) Orange, (h) Transparent, and (i) Violet

CHARACTERISTICS FOR CATEGORISING PLASTIC DEBRIS Polymer Type & Their Toxicity

10

(Source: Bernau, 2020)

🍕 ISAP 202'

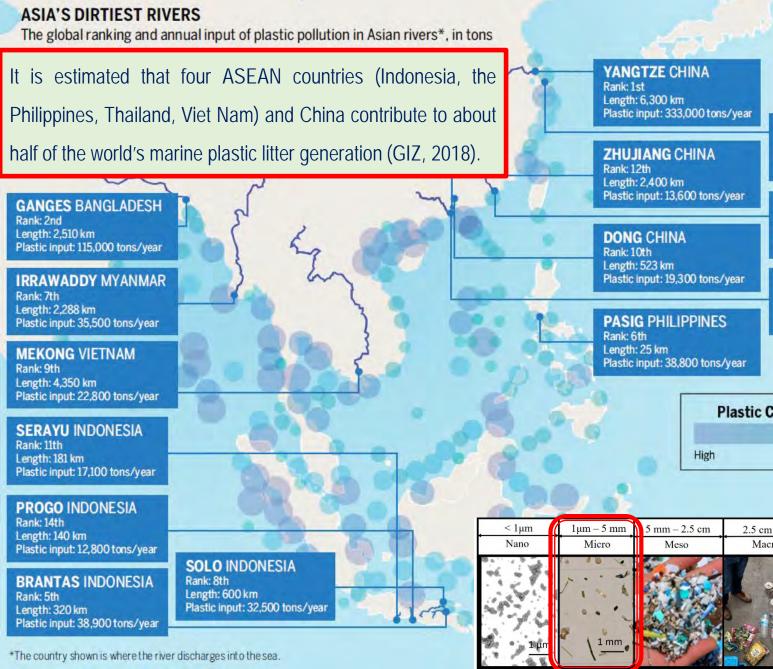
plastic litters comes from

land-based sources

through different

pathways.

Rivers are considered to


be one of the major

pathways for land-based

plastic waste, mainly

coming from single-use

plastic items

HUANGPU CHINA Rank: 4th Length: 113 km Plastic input: 40,800 tons/year

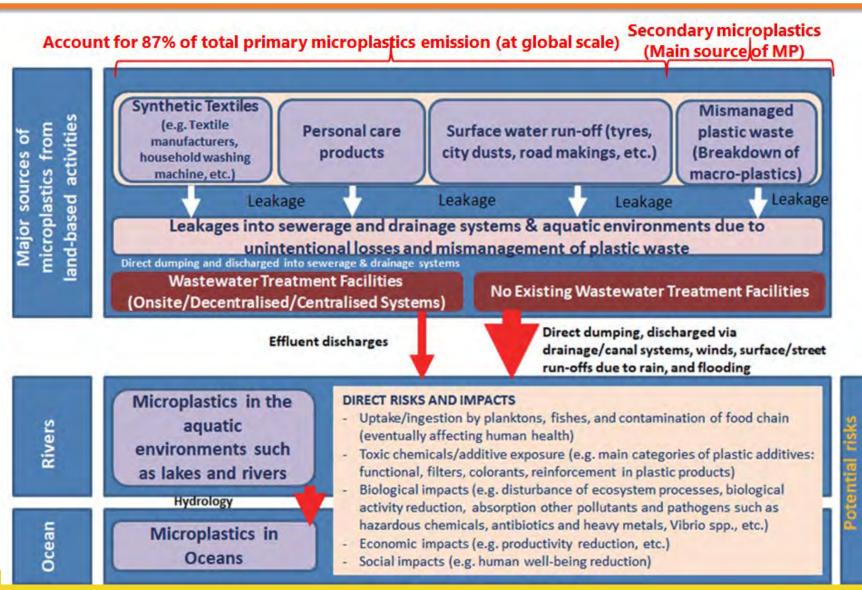
HANJIANG CHINA Rank: 13th Length: 1,532 km Plastic input: 12,900 tons/year

XI CHINA Rank: 3rd Length: 1,957 km Plastic input: 73,900 tons/year

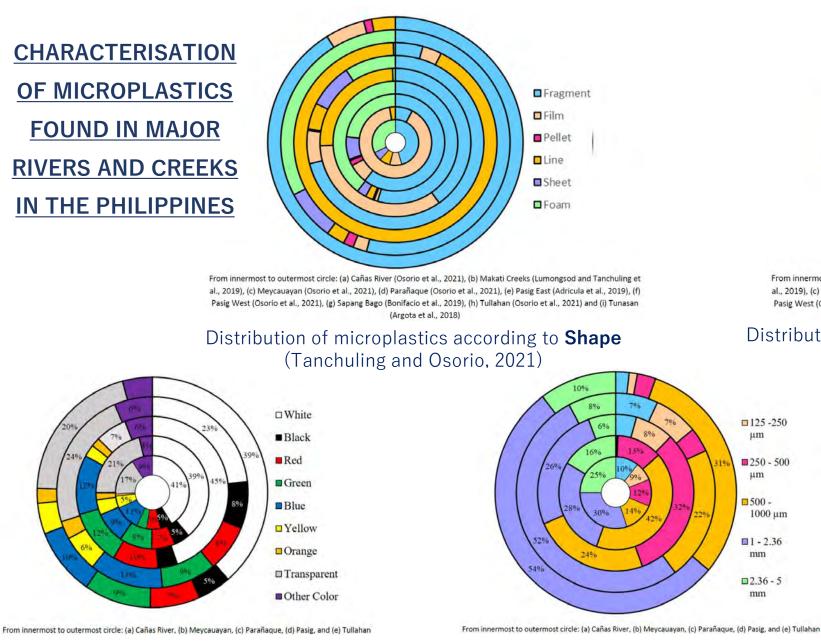
Plastic Concen	tration
High	Low

< 1µm	$1\mu m - 5 mm$	5 mm – 2.5 cm	2.5 cm -1 m	>1 m
Nano	Micro	Meso	Macro	Mega
<u>эцп</u>	1 mm			

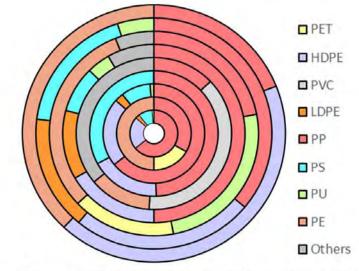
GROWING INTERESTS ON THE MICROPLATICS RESEARCH IN THE PERIOD OF 2014-2019


European countries account for 67% of all the published scientific articles

(Source: Vollertsen et al., 2019)


3. MICROPLASTIC OCCURENCES, INGESTIONS AND ITS IMPACTS ON AQUATIC ENVIRONMENTS IN ASEAN COUNTRIES

- Microplastics (MPs) are currently a great concern as they exist in water, sediments, fauna and even flora.
- \checkmark MPs are divided into two categories, primary and secondary, based on their origin. Primary MPs (e.g. tire-wear particles, broken road markings, synthetic textile microfibres from cloth washing, microbeads from personal products and land-based care accidental pellet releases) enter the environment directly. Secondary MPs derive from the breakdown of macroplastic pieces in the environment.
- These MPs originate from various sources and enter river systems through different pathways: road runoff, wastewater systems, wind movement, etc.

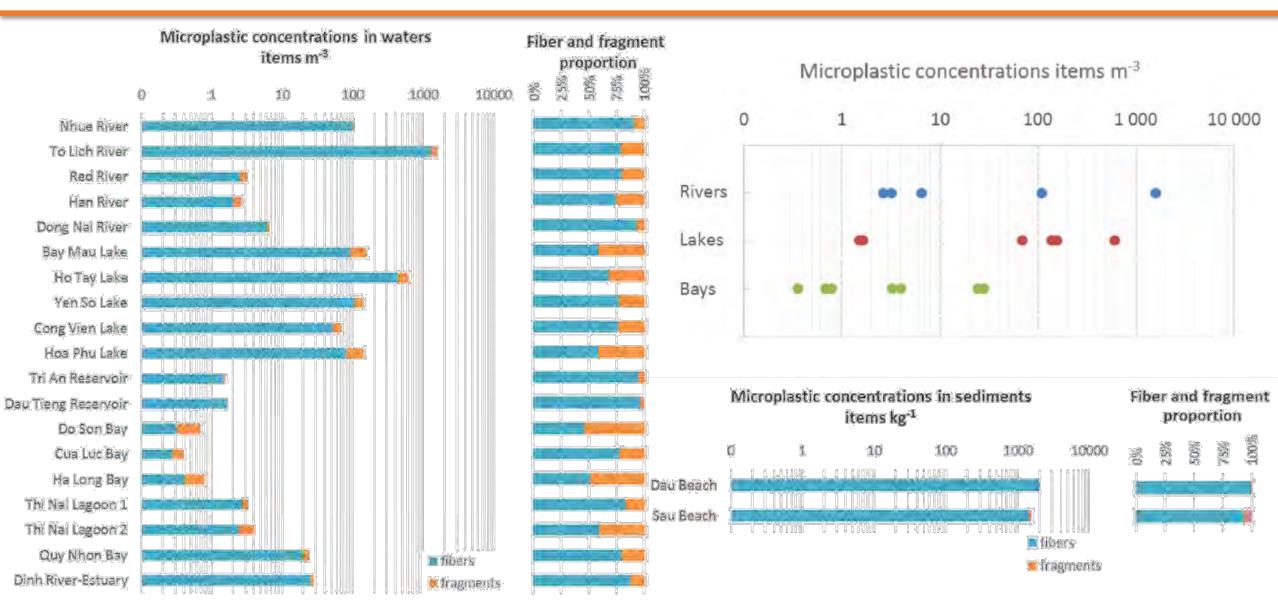

😼 ISAP 2021

Study A	rea	Country	Target Size	Mean Abundance	Refere	nces						2,643		
	River	Indonesia	330 µm to	11,535	Lestari et a	I. (2020)						·		
			5 mm	particles/m3					Drinking Water		6.5 µm to 5	particles/L –	Babel and Dork	
	River Indones		330 µm to	9.66	Lestari et al. (2020)				Treatment	Cambodia	mm	Inlet	(2021)	
		indenteerd	5 mm	particles/ m3					Plant			1,138		
	Surface	Indonesia	125 µm to	2.58x105	Ramadan and Sembiring (2019)							particles/L -		
	Water		5 mm	particles/km2								Distribution Tank		
	Surface	Malaysia	<5 mm	0.41	Khalik et a	al.					<eq td="" to<="" upp=""><td></td><td></td></eq>			
	Water			particles/kg	(0010)	2	3 0	Wastewater	Wastewater	r Indonesia	<50 µm to		Sucharitakul et al. (2021)	
	Su M		Beaches	Brunei	<5 mm	particle	۲				5 mm	particles/L	a. (2021)	
Freshwater/ Marine Water	Fres			Cambodia	1-5 mm	26,7						26.6		
						particl 10,9	-					particles/L -	Tadsuwan and	
	F		Soil of	Indonesia	1-5 mm	10,0	525		Wastewater	Thailand	0.05 to 5	Influent		
			Dumping	Indonesia	1-0 11111	partic		Fishes and			105.37		Babel (2021)	
			Sites			20,			Indonesia	donesia 0.3- 5 mm		, Lestari et al. (2020)		
	F			Vietnam	1-5 mm	partic		Bivalves			individua			
	Sediment/			Laos	1-5 mm	8,4					3.13			
	L	Soil	partic 2			Kijing Shells	Indonesia	<5 mm	particles/	Yuliati et al. (2021)				
	L	Sed	Sediment	Malaysia	<5 mm	partic	Marine Biota				individual			
						partic 6		Skipjack Tuna	Indonesia	<0.25-5	4 particles/	Andreas et al.		
			Sediment Malaysia <5 r		<5 mm	partic		Tuna	muonesia	mm	individual	(2021)		
					purtic				0.0043-	1,610.50				
			Beaches Thailand <4 m		<4 mm 100			Fishes	Malaysia 0.157 mm p		particles/	lbrahim et al. (2017)		
						partic					individual			
			Beaches	Brunei	<5 mm	2 partic	Others	Road Dust	Myanmar	0.10-	136	Mon and Nakata et		
							OUICIS	Nuau Dust	iviyanıllal	5 mm	particles/kg	al. (2020)		

Distribution of microplastics according to **Color** (Osorio et al., 2021)

Distribution of microplastics according to **Size** (Osorio et al., 2021)

From innermost to outermost circle: (a) Cañas River (Osorio et al., 2021), (b) Makati Creeks (Lumongsod and Tanchuling et al., 2019), (c) Meycauayan (Osorio et al., 2021), (d) Parañaque (Osorio et al., 2021), (e) Pasig East (Adricula et al., 2019), (f) Pasig West (Osorio et al., 2021), (g) Sapang Bago (Bonifacio et al., 2019), (h) Tullahan (Osorio et al., 2021) and (i) Tunasan (Argota et al., 2018)


Distribution of microplastics according to **Polymer Type** (Tanchuling and Osorio, 2021)

- The abundance of microplastics: 1.32 particles/m³ in Pasig River to as high as 57,665 particles/m³ in Meycauayan River.
- The dominating occurrence of fragments and PP <u>may originate from</u> the degraded larger plastics that are mismanaged and leaked to the environment.

💈 ISAP 2021

REPORTS ON THE OCCURRENCE OF MICROPLASTICS FROM RIVER & LAKE WATER IN VIETNAM

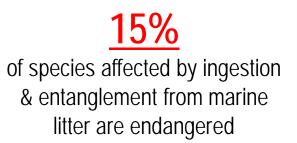
(Source: Strady et all., 2021)

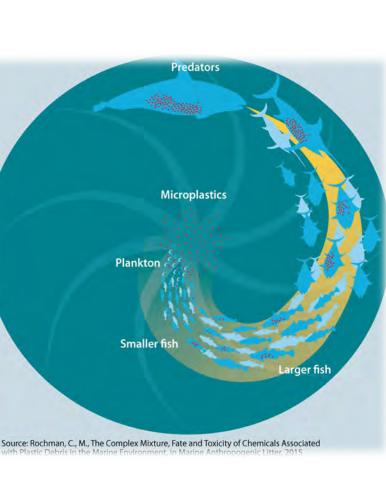
4. POTENTIAL IMPACTS OF MICROPLASTICS POLLUTION ON FOOD CHAIN AND HUMAN HEALTH

Microplastics can also be ingested by planktons at the bottom of the aquatic food chain allowing plastics to move to the next level of the aquatic food chain eventually affecting humans.

- A study carried out by the University of California, Davis, and Hasanuddin University in Indonesia, 76 fish samples across 11 different species were collected from markets in Makassar, Indonesia. The study revealed that, anthropogenic debris (plastic or fibrous material) was found in 28% of individual fish (in their guts) and in 55% of all species (Rochman et al., 2015).
- □ In another study conducted in Japan, Tanaka and Takada (2016) also reported that microplastics was detected in the digestive tracts of 49 out of 64 Japanese anchovy (77%) sampled in Tokyo Bay. Among detected microplastics, polyethylene and polypropylene account for 52.0% and 43.3%, respectively. The results from this study also indicated that most of the detected plastics were fragments (86.0%), and 7.3% were beads or microbeads, which is similar to those found in facial cleansers.

4. POTENTIAL IMPACTS OF MICROPLASTICS POLLUTION ON FOOD CHAIN AND HUMAN HEALTH




By 2050, an estimated <u>99%</u> of seabirds will have ingested plastic

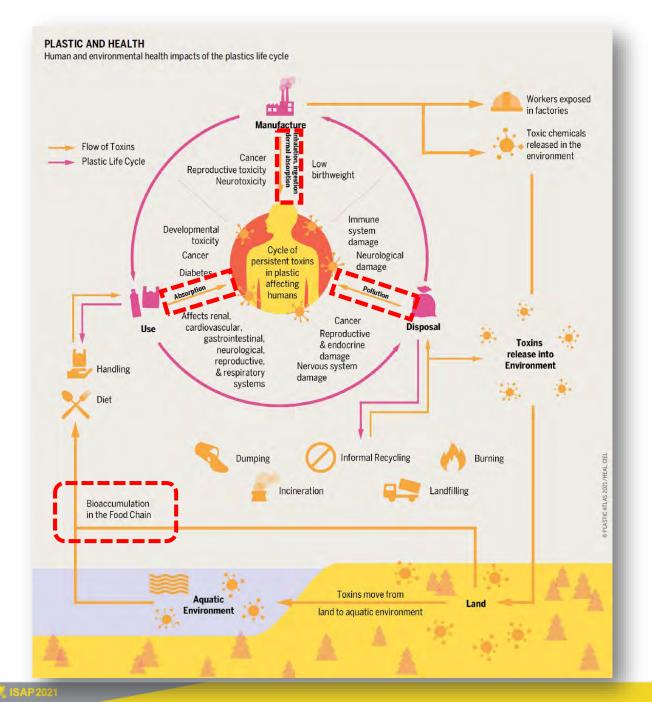
Marine litter harms over <u>600</u> marine species

Microplastics can contain toxic contaminants (e.g., bisphenol A, phthalate plasticizers, polybrominated carcinogens, flame retardants, and heavy metals), which are either derived from the plastic itself or absorbed from the surrounding environment. Ingestion of these toxic chemicals can cause a of health problems, number including cardiovascular disease, diabetes, and cancer.

TΩ

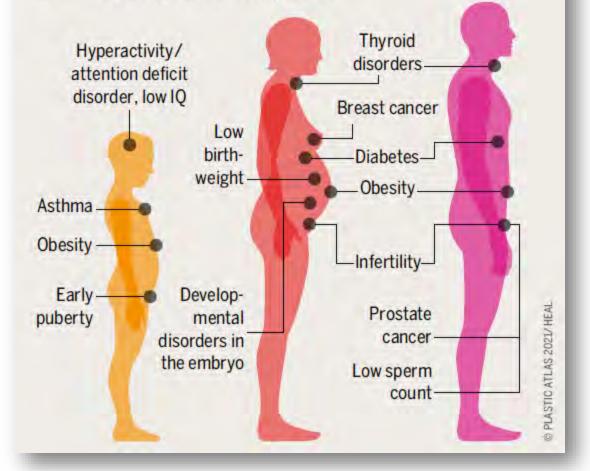
(Source: Jambeck et al., 2015; UN Environment, 2018)

"Whales keep eating plastic and dying. This one's stomach had 88 pounds of calcifying trash"



Source: https://www.washingtonpost.com/science/2019/03/18/whales-keep-eating-plastic-dying-this-ones-stomach-had-pounds-calcifying-trash/

🝕 ISAP 2021

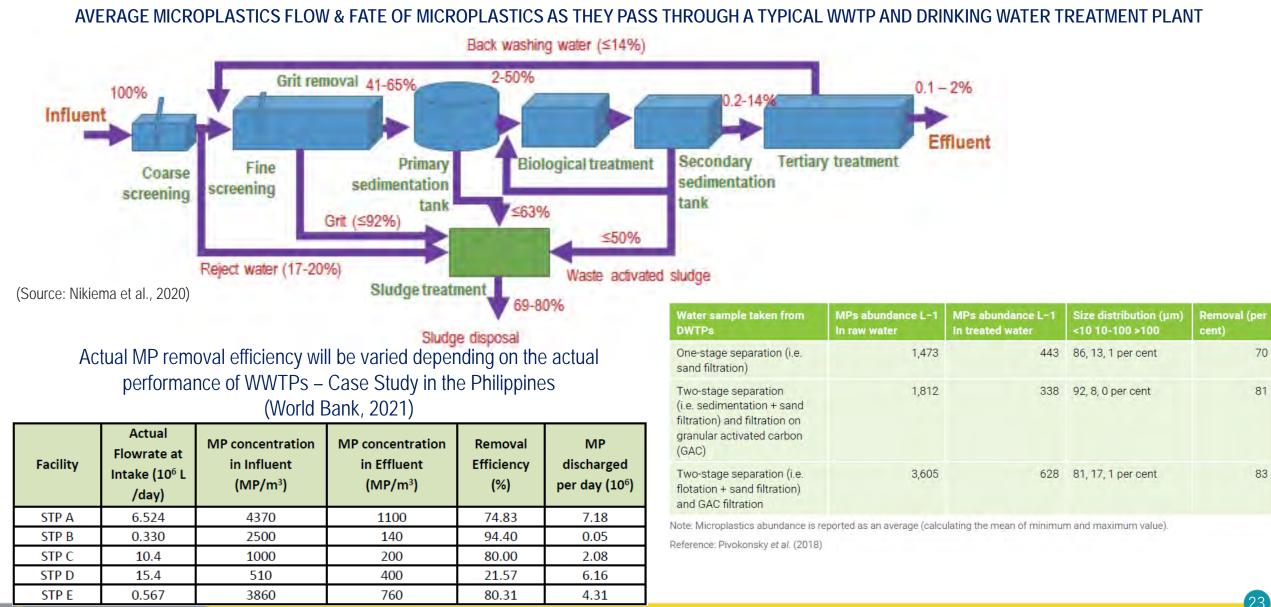

REPORTS ON THE OCCURRENCE OF MICROPLASTICS FROM SEAFOOD IN SOUTHEAST ASIA

-		No. of	No. of		Dominant												
Country		species	Sample	*Ingestion	Shape	Colour	Size (mm)*	Polymer	Referenc								
Indonesia	Bengkalis Waters, Riau	3 fish species	36	62.96 particle/fish	Film	White	0.1-0.5	NA	[9]								
	Kodingareng Lompo Island	4 fish species	46	up to 40%	Line	Blue	NA	LDPE	[10]								
	Citarum River downstream area	1 fish species (Chanos chanos)	6	$1.33 \pm 0.58 - 2.6 \pm$ 2.23 particle/fish (gills & guts); 1.11 ± 0.84 -1.17 ± 0.98 particle/fish (tissue)	Fragment	Black	0.5-1.0		[7]								
	Pantai Baron, Yogyakarta	4 fish species	80	78 97.5% (45.60 ± 44.31 particle/fish)	Fibre	Black	0.05-0.1	PA	[11]								
	Pangandaran Bay	2 fish	18	NA	Fragment	varied	varied	X - 1 - 1		No. of	No. of			Domin	ant		
	Talisayan	species 1 fish	15	366 ± 3.51	Film	NA	0.05-	Country	Sampling site	species	Sample	*Ingestion	Shape	Colour	Size (mm)*	Polymer	- Reference
	Harbor, East Kalimantan	species (Stolephorus spp.)		particle/fish			0.5	Malaysia	Setiu Wetlands,	1 fish species (<i>Lates</i>	4	Total of 4498 particles	Line	Black	< 0.015	PA and PVA	[19]
	East Lombok Harbour, Lombok Island	1 fish species (Stolephorus spp.)	15	88 ± 2.89 particle/fish	Fibre	NA	0.05- 0.6		Terengganu Setiu Wetland, Terengganu	(Lates calcarifer) 1 bivalve species (Scapharca	NA	up to 557.98 particle/g d.w	Filament	Transparent	NA	PE and PA	[20]
	Pantai Indah Kapuk	9 fish species	174	97.13%	Fibre	Transparent	0.06- 0.08			cornea)							
Malaysia	Klang River estuary	3 gastropod species	95	0.5 – 1.75 particle/g w.w	Fibre	Black	0.3-1.0	Phillipines	Negros Oriental	1 fish species (Siganus	120	46.70%	Fibre	NA	1.8 ± 0.13	PP	[21]
	Skudai River, Johor	6 fish species	60	up to 100%	varied	Blue	varied		o: 1	fuscescens)	-		-				(22)
	Seri Kembangan Market,	11 fish species	110	up to 100%	Fragment	NA	NA		Sineguelasan Seafood Terminal	1 bivalve species (Perna viridis)	5	NA	varied	varied	< 1	NA	[22]
	Selangor							Thailand	Chi River	8 fish	107	72.90%	Fibre	Blue	0.5	NA	[23]
							-		Gulf of Thailand	species 24 fish species	110	66.67%	Fibre and Fragment	Blue and Green	varied	NA	[24]
								Vietnam	Tinh Gia, Thanh Hoa	1 bivalve species (Perna viridis)	5	0.29 ± 0.14 particle/g w.w	NA	NA	NA	РР	[25]
(Source: Sar	ijan et al., 2021)							Singapore	Supermarkets	3 crustacean species (shrimps)	93	13 ± 1 to 7050 ± 418 particle/g w.w	Film and Sphere	Blue and Pink	NA	NA	[26]

INVISIBLE DANGER

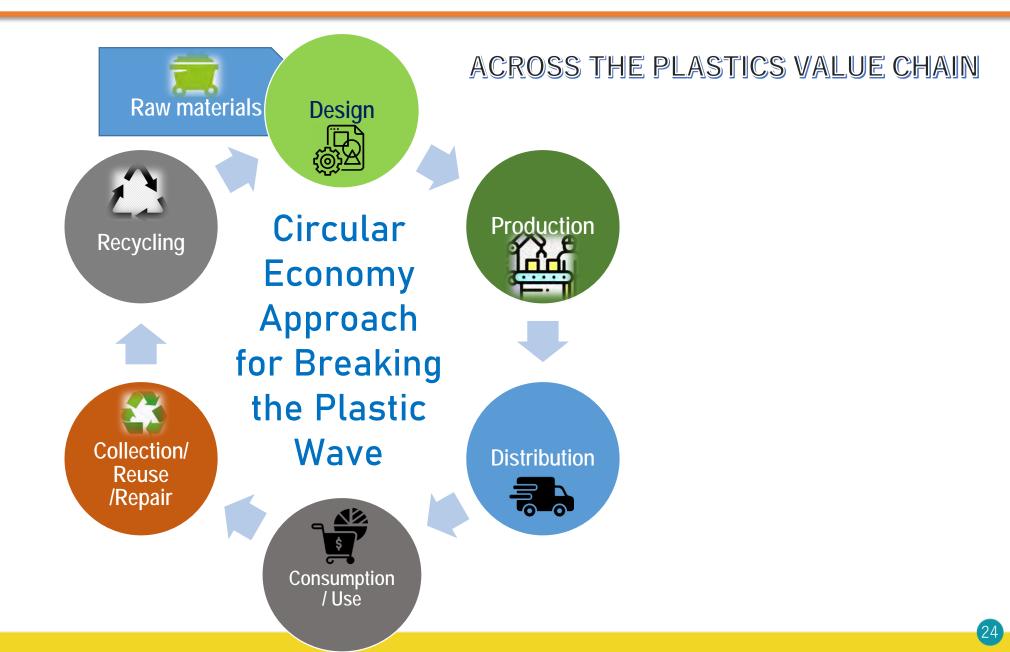
Possible health consequences of day-to-day contact with hormonally active substances in plastics

"Many of the chemicals in plastic have an effect on human health. The consequences may be both serious and long-term."


21

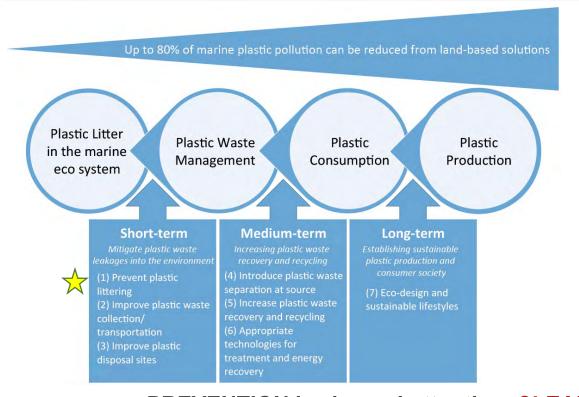
- A recent study reported that the presence of MPs in human placentas may lead to adverse pregnancy outcomes including preeclampsia and fetal growth restriction.
- This study observed the presence of microplastic fragments ranging from 5 to 10 µm in size, with spherical or irregular shape in placentas (5 in the fetal side, 4 in the maternal side and 3 in the chorioamniotic membranes), which are possibly used for manmade coatings, paints, adhesives, plasters, finger paints, polymers and cosmetics and personal care products.

"12 microplastic fragments (mostly 10 um in size), with spherical or irregular shapes were found in 4 placentas (5 in fetal side, 4 in the maternal side and 3 in the chorioamniotic membranes)"



5. REMOVAL OF MICROPLASTICS FROM WATER/WASTEWATER TREATMENT PLANTS

🍕 ISAP 2021


6. CIRCULAR PLASTIC ECONOMY APPROACH FOR CLOSING THE LOOP

🝕 ISAP 2021

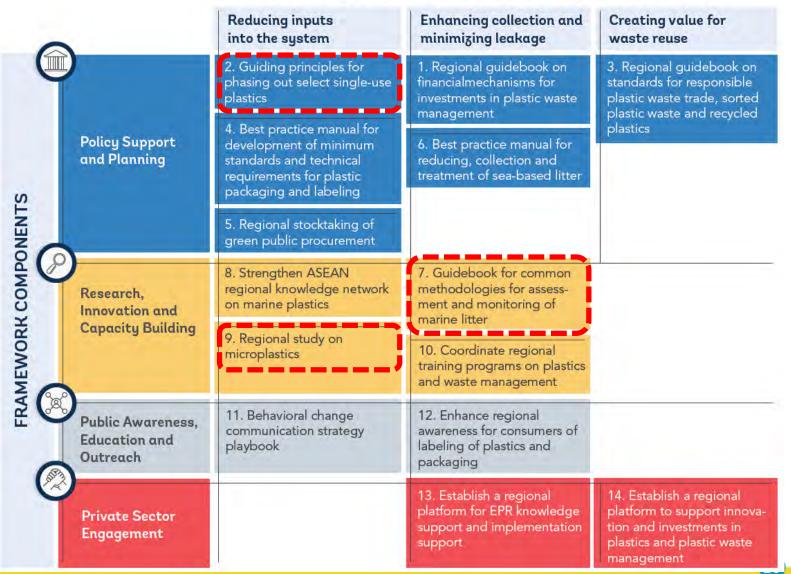
STRATEGIC ACTIONS TO REDUCE MARINE PLASTIC WASTE FROM LAND-BASED SOURCES

THROUGH SUSTAINABLE WASTE MANAGEMENT APPROACH

<u>PREVENTION</u> is always better than <u>CLEANING UP</u> (Awareness raising, behavioural and lifestyle changes, EPR, economic incentives, bans, etc.) Innovative Business Models for Plastic Recycling, considering the involvement of private sector through effective PPP models

4 Major Framework Components Identified under

the ASEAN Regional Action Plan for Combating Marine Debris in the ASEAN Member States (2021-2025)



ASEAN Framework of Action on Marine Debris (2018)

ASEAN Regional Action Plan for Combating Marine Debris (2020)

G20 Osaka Blue Ocean Vision

National Marine Litter Action Plans from AMS

ELEMENTS OF THE WASTE VALUE CHAIN

(Source: ASEAN Secretariat, 2021)

- At national and city level, great efforts are also underway to tackle both riverine and marine plastic pollution, with special attention on regulating or planning for the elimination of single-use plastic products and plastic packaging.
- □ For example, in October 2018, the Government of Malaysia released its Roadmap to Eliminate Single-use Plastics 2018 2030, announcing a policy to eliminate plastic straws and plastic bags by 2030.
- In Thailand, the Government announced a Roadmap on Plastic Waste Management 2018-2030, with the aim of reducing and halting the use of plastic and replacing it with environmentally-friendly materials. Accordingly, three plastic products, including plastic cap seals for water bottles, oxo-degradable plastics and plastic microbeads, would be banned in Thailand. The use of four other types of plastic, including plastic bags less than 36 microns in thickness, styrofoam food boxes, plastic straws and single-use plastic cups, will stop by 2022. By 2027, 100% of plastic waste will be reusable.
- Similarly, in Indonesia, the Philippines and Viet Nam, many actions have been taken by both central and local governments to reduce plastic pollution, mainly focusing on macro-plastic pollution in aquatic environments.

7. KEY RECOMMENDATIONS FOR ADDRESSING RIVERINE MICROPLASTICS POLLUTION IN ASEAN COUNTRIES

- 1. Install and optimise the performance of wastewater treatment facilities in ASEAN countries
- 2. Strictly control the discharge of wastewater containing microplastics into aquatic environments
- 3. Develop national quality standards related to microplastics pollutants (standards for both effluent and drinking water)
- 4. Properly manage plastic waste to avoid leakage into the water environment by improving municipal solid waste collection, treatment and management services
- 5. Reduce the use of single-use plastic products and replace them with alternative products
- 6. Introduce an appropriate policy approach of Extended Producer Responsibility to mitigate MP pollution, especially in aquatic environments.
- 7. Identifying alternative solutions (with a better design) to reduce leakages of MP from textiles, personal care products, and tire-wear particles emissions

ご清聴ありがとうございました。 Thank you very much for your attention.

Dr. Pham Ngoc Bao

Institute for Global Environmental Strategies (IGES)

Email: ngoc-bao@iges.or.jp

